

Start at the bottom left, then follow the branch corresponding to your particular STR marker values. That will give you your II STR Cluster, which will indicate where your male-line ancestors may have originated. Brighter reds in the map represent the locations of the most-distant male-line ancestor reported by members of the cluster.

TDR, June 2010 (updated December 2010)

I1 STR Clan "AAB" splits into "AABA" with Y-GATA-H4 ≥ 10, and "AABB" with Y-GATA-H4 < 10. "AABB" people are mostly L338+. Note DYS459a=7 is a completely separate branch, that by chance convergence ends up in "BA*". It has peak density in Poland. The sub-clans "AABA", "AABB", "BABA", and "BABB", represent 9%, 6%, 4%, and 2% respectively of people tested as I1.

Within Finland, I1-"BAB" is more likely in eastern areas. (Note DY5459a=7 should be excluded from I1-"BA*".) Within Finland, I1-"BAA" is more likely in western areas (and even across to Sweden/Norway). I1-"AABB" is relatively high in Ireland, Scotland, England, and the Netherlands/Belgium. I1-"AABA" is particularly high in Wales, but occurs commonly elsewhere.

		y-1 idpio <u>c</u>	ji oup .				5 - Mui Kei Mouui Vu			
	Marker	(mutate)	ААА	AAB	ABA	ABB	BAA	BAB	BBA	BBB
1:	DYS393	(1320g)	13	13	13	13	13	13	13	13
2:	DYS390	(320g)	22	22	22	22	23	23	23	23
	DYS 19	(660g)	14	14	14	14	14	14	14	14
	DYS391	(380g)	10	10	10	10	10	10	10	10 14
	DYS385a DYS385b	(440g) (440g)	13 14	13 14	13 14	13 14	13 14	13 14	14 14	14 15
	D15303D DYS426	(1100g)	11	11	11	11	11	11	11	11
8:	DYS388	(4500g)	14	14	14	14	14	14	14	14
	DYS439	(210g)	11	11	11	11	11	11	11	11
	DYS389i	(540g)	12	12	12	12	12	12	12	12
	DYS392 DYS389ii	(1920g) (410g)	11 28	11 28	11 28	11 28	11 28	11 28	11 28	11 29
	DYS458	(120g)	15	15	15	15	15	16	15	15
14:	DYS459a	(760g)	8	8	8	8	8	8	8	8
	DYS459b	(760g)	9	9	9	9	9	9	9	9
	DYS455	(6200g)	8	8	8	8	8	8	8	8
	DYS454 DYS447	(6200g) (380g)	11 23	11 22	11 23	11 23	11 23	11 23	11 23	11 23
	DYS437	(1010g)	16	16	16	16	16	16	16	16
20:	DYS448	(740g)	20	20	20	20	20	20	20	20
	DYS449	(120g)	28	28	29	28	28	29	28	28
	DYS464a	(180g)	12	12	12	12	12	12	12	12
	DYS464b DYS464c	(180g) (180g)	14 15	14 15	14 15	14 15	14 15	14 15	14 15	14 15
	DYS464d	(180g) (180g)	16	16	16	16	15	15	16	16
	DYS460	(250g)	10	11	10	10	10	10	10	10
27:	Y-GATA-H		10	10	10	10	10	10	10	10
	Y-CA-IIa		19	19	19	19	19	19	19	19
	Y-CA-IIk DYS456	o (810g) (140g)	21 14	21 15	21 14	21 14	21 14	21 14	21 14	21 14
	DIS430 DYS607	(140g) (240g)	14	14	14	14	14	14	14	14
	DYS576	(100g)	16	16	16	17	16	16	17	17
	DYS570	(130g)	19	19	20	20	20	20	20	20
	CDYa	(30g)	35	35	35	35	35	35	35	35
	CDYb DYS442	(30g) (310g)	37 12	<mark>36</mark> 12	37 12	<mark>38</mark> 12	37 12	37 12	37 12	37 12
	DYS438	(1820g)	10	10	10	10	10	10	10	10
	DYS531	(2700g)	11	11	11	11	11	11	11	11
	DYS578	(12500g)	8	8	8	8	8	8	8	8
	DYS395a	(3200g)	15	15	15	15	15	15	15	15
	DYS395b DYS590	(3200g) (1850g)	15 8	15 8	15 8	15 8	15 8	15 8	15 8	15 8
	DYS537	(1750g)	11	11	11	11	11	11	11	11
	DYS641	(5600g)	10	10	10	10	10	10	10	10
		(100000g)	8	8	8	8	8	8	8	8
	DYS406	(650g)	9	9	9	9	9	9	9	9
	DYS511 DYS425	(780g) (5600g)	9 12	9 12	9 12	9 12	9 12	9 12	10 12	10 12
	DYS413a	(500g)	22	22	23	23	23	22	23	23
50:	DYS413b	(500g)	25	25	25	25	25	24	25	25
	DYS557	(310g)	15	15	16	16	15	15	15	15
	DYS594	(3400g)	10	10	10	10	10	10	10	10
	DYS436 DYS490	(5600g) (5300g)	12 12	12 12	12 12	12 12	12 12	12 12	12 12	12 12
	DYS534	(120g)	16	16	16	16	16	16	16	17
	DYS450	(5000g)	8	8	8	8	8	8	8	8
	DYS444	(310g)	13	13	13	13	13	13	13	12
	DYS481	(180g)	25	25	25	25	25	26	25	25
	DYS520 DYS446	(410g) (1050g)	20 13	20 13	20 13	20 13	20 13	20 13	20 13	20 13
	D15446 DYS617	(1050g) (2400g)	13	13	13	13	13	13	13	13 14
	DYS568	(1900g)	11	11	11	11	11	11	11	11
	DYS487	(1030g)	12	12	12	12	12	12	12	12
	DYS572	(470g)	11	11	11	11	11	11	11	11
	DYS640 DYS492	(2900g) (2400g)	11 12	11 12	11 12	11 12	11 12	11 12	11 12	11 12
	DYS492 DYS565	(2400g) (1100g)	12	12	12	12	12	12	12	12
5	210000	(009)	I **							

y-Haplogroup I1 STR Clusters - Marker Modal Values

y-Haplogroup I1 STR Clusters - Allele Histograms (for FTDNA markers 1 to 12)

	AAA	AAB	ABA	ABB	BAA	BAB	BBA	BBB
1: DYS393	15 14 13 12 11							
2: DYS390	24 23 22 21 20							
3: DYS 19	16 15 14 13 12							
4: DYS391	12 11 10 9 8							
5 : DYS385a	15 14 13 12 11							
6: DYS385b	16 15 14 13 12							
7: DYS426	13 12 11 10 9							
8: DYS388	16 15 14 13 12							
9: DYS439	13 12 11 10 9							
10: DYS389i	14 13 12 11 10							
11: DYS392	13 12 11 10 9	13 12 11 10 9	13 12 11 10 9	13 12 11 10 9	13	13 12 11 10 9	13 12 11 10 9	13 12 11 10 9
12: DYS389ii	30 29 28 27 26							

Here the STR marker **DYS390** can be used to separate the " $A^{**"}$ and " $B^{**"}$ clusters. In addition, the " $B^{**"}$ cluster members often have increased allele values for the STR markers **DYS385a,b** compared to the " $A^{**"}$ cluster members. The Kittler order is important for **DYS385a,b** and that information is not given here.

y-Haplogroup I1 STR Clusters - Allele Histograms (for FTDNA markers 13 to 25)

	AAA	AAB	ABA	ABB	BAA	BAB	BBA	BBB
13: DYS458	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13
14: DYS459a	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6
15: DYS459b	11 10 9 8 7	11 10 9 8 7	11 10 9 8 7	11 10 9 8 7	11 10 9 8 7	11 10 9 8 7	11 10 9 8 7	11 10 9 8 7
16: DYS455	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6
17: DYS454	13 12 11 10 9	$ \begin{array}{c} 13\\12\\11\\10\\9\end{array} $	13 12 11 10 9	13 12 11 10 9	13 12 11 10 9	13 12 11 10 9	13 12 11 10 9	13 12 11 10 9
18: DYS447	25 24 23 22 21	25 24 23 22 21	25 24 23 22 21	25 24 23 22 21	25 24 23 22 21	25 24 23 22 21	25 24 23 22 21	25 24 23 22 21
19: DYS437	18 17 16 15 14	18 17 16 15 14	18 17 16 15 14	18 17 16 15 14	18 17 16 15 14	18 17 16 15 14	18 17 16 15 14	18 17 16 15 14
20: DYS448	22 21 20 19 18	22 21 20 19 18	22 21 20 19 18	22 21 20 19 18	22 21 20 19 18	22 21 20 19 18	22 21 20 19 18	22 21 20 19 18
21: DYS449	30 29 28 27 26	30 29 28 27 26	30 29 28 27 26	30 29 28 27 26	30 29 28 27 26	30 29 28 27 26	30 29 28 27 26	30 29 28 27 26
22 : DYS464a	14 13 12 11 10	14 13 12 11 10	14 13 12 11 10	14 13 12 11 10	14 13 12 11 10	14 13 12 11 10	14 13 12 11 10	14 13 12 11 10
23: DYS464b	16 15 14 13 12	16 15 14 13 12	16 15 14 13 12	16 15 14 13 12	16 15 14 13 12	16 15 14 13 12	16 15 14 13 12	16 15 14 13 12
24: DYS464c	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13
25 : DYS464d	18 17 16 15 14	18 17 16 15 14	18 17 16 15 14	18 17 16 15 14	18 17 16 15 14	18 17 16 15 14	18 17 16 15 14	18 17 16 15 14

Here the STR marker **DYS458** can be used to separate the "BAA" and "BAB" clusters – it is a weak separation however, as that marker has a high mutation rate. Some members of the "BAB" cluster have acquired a decreased allele value for the STR marker **DYS459a**.

y-Haplogroup I1 STR Clusters – Allele Histograms (for FTDNA markers 26 to 37)

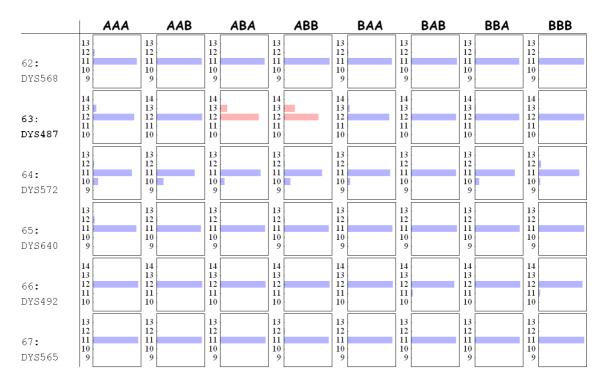
	AAA	AAB	ABA	ABB	BAA	BAB	BBA	BBB
26: DYS460	12 11 10 9 8							
27: Y-GATA-H4	12 11 10 9 8							
28: Y-CA-IIa	21 20 19 18 17							
29: Y-CA-IIb	23 22 21 20 19							
30: DYS456	16 15 14 13 12							
31: DYS607	16 15 14 13 12							
32: DY\$576	18 17 16 15 14							
33: DYS570	22 21 20 19 18							
34: CDYa	37 36 35 34 33							
35 : CDYb	39 38 37 36 35							
36: DYS442	14 13 12 11 10							
37: DYS438	12 11 10 9 8							

Here the STR marker **DYS456** can be used to separate the "AAA" and "AAB" clusters. In addition, the STR marker **DYS576** can be used to separate the "ABA" and "ABB" clusters - it is a weak separation however, as that marker has a particularly high mutation rate*. Some members of the "AAB" cluster have acquired a decreased allele value for the STR marker **Y-GATA-H4**, and an increased allele value for the STR markers **DYS460** and **DYS607**.

* One mutation in **DYS576** is expected to occur about every 100 generations. Equivalently, one child in every 100 male births can be expected to have a different **DYS576** allele than its father. So using the fast mutating **DYS576** to split clusters will fail in some cases.

y-Haplogroup I1 STR Clusters - Allele Histograms (for FTDNA markers 38 to 49)

	AAA	AAB	ABA	ABB	BAA	BAB	BBA	BBB
38: DYS531	13 12 11 10 9	13 12 11 10 9	13 12 11 10 9	13 12 11 10 9	13 12 11 10 9	13 12 11 10 9	13 12 11 10 9	13 12 11 10 9
39: DYS578	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6
40: DYS395a	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13
41: DYS395b	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13
42: DYS590	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6
43: DYS537	13 12 11 10 9	13 12 11 10 9	13 12 11 10 9	13 12 11 10 9	13 12 11 10 9	13 12 11 10 9	13 12 11 10 9	13 12 11 10 9
44: DYS641	12 11 10 9 8	12 11 10 9 8	12 11 10 9 8	12 11 10 9 8	12 11 10 9 8	12 11 10 9 8	12 11 10 9 8	12 11 10 9 8
45: DYS472	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6
46:	11 10 9 8	11 10 9 8 7	11 10 9 8	11 10 9 8 7	11 10 9 8 7	11 10 9 8	11 10 9 8 7	11 10 9 8 7
DYS406 47:	7 11 10 9 8	11 10 9 8 7	7 11 10 9 8	11 10 9 8	11 10 9 8 7	7 11 10 9 8	11 10 9 8 7	111 10 9 8 7
DYS511 48:	7 14 13 12 11	14 13 12 11	7 14 13 12 11	7 14 13 12 11 10	14 13 12 11	7 14 13 12 11	14 13 12 11	14 13 12 11
DYS425 49: DYS413a	10 25 24 23 22 21	10 25 24 23 22 21	10 25 24 23 22 21	10 25 24 23 22 21		10 25 24 23 22 21	10 25 24 23 22 21	10 25 24 23 22 21


Here the STR marker **DYS511** can be used to separate the "BA*" and "BB*" clusters - but be careful, as a small number of "ABB" cluster members have independently acquired the same mutation.

y-Haplogroup I1 STR Clusters - Allele Histograms (for FTDNA markers 50 to 61)

	AAA	AAB	ABA	ABB	BAA	BAB	BBA	BBB
50: DYS413b	27 26 25 24 23	26 25 24	27 26 25 24 23	27 26 25 24 23	27 26 25 24 23	27 26 25 24 23	27 26 25 24 23	27 26 25 24 23
51: DYS557	17 16 15 14 13	16 15 14	76 5 4 .3	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13	17 16 15 14 13
52: DYS594	12 11 10 9 8	11 10	2 1 0 9 8	12 11 10 9 8	12 11 10 9 8	12 11 10 9 8	12 11 10 9 8	12 11 10 9 8
53: DYS436	14 13 12 11 10	13 12 11	4 3 2 1 0	14 13 12 11 10	14 13 12 11 10	14 13 12 11 10	14 13 12 11 10	14 13 12 11 10
54: DYS490	14 13 12 11 10	13 12 11	4 3 2 1 0	14 13 12 11 10	14 13 12 11 10	14 13 12 11 10	14 13 12 11 10	14 13 12 11 10
55 : DYS534	18 17 16 15 14	17 16 15	8 7 6 5 4	18 17 16 15 14	18 17 16 15 14	18 17 16 15 14	18 17 16 15 14	18 17 16 15 14
56: DYS450	10 9 8 7 6	9	0 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6	10 9 8 7 6
57: DYS444	15 14 13 12 11	14 13 12	5 4 3 2 1	15 14 13 12 11	15 14 13 12 11	15 14 13 12 11	15 14 13 12 11	15 14 13 12 11
58: DYS481	27 26 25 24 23	26 25 24	27 26 25 24 23	27 26 25 24 23	27 26 25 24 23	27 26 25 24 23	27 26 25 24 23	27 26 25 24 23
59: DYS520	22 21 20 19 18	21 20 19	22 21 20 9 8	22 21 20 19 18	22 21 20 19 18	22 21 20 19 18	22 21 20 19 18	22 21 20 19 18
60: DYS446	15 14 13 12 11	14 13 12	5 .4 .3 .2 .1	15 14 13 12 11	15 14 13 12 11	15 14 13 12 11	15 14 13 12 11	15 14 13 12 11
61: DYS617	15 14 13 12 11	14 13 12	5 4 3 2 1	15 14 13 12 11	15 14 13 12 11	15 14 13 12 11	15 14 13 12 11	15 14 13 12 11

Here the STR marker **DYS557** can be used to separate the "AA*" and "AB*" clusters. In addition, the STR marker **DYS617** can be used to separate the "BBA" and "BBB" clusters - but be careful, as a very small number of "AAA" cluster members have independently acquired the same mutation. The STR marker **DYS444** can also indicate the split between the clusters "BBA" and "BBB" in some individuals.

y-Haplogroup I1 STR Clusters - Allele Histograms (for FTDNA markers 62 to 67)

Some members of the "AB*" clusters have an increased allele value for DYS487.

Additional STR markers, such as **DYS462** are not given here. A mutation in the **DYS462** marker (from an ancestral 12 repeats to 13 repeats) has probably occurred within the "BB*" clusters, and so it is a useful marker to have tested. Insufficient data was available to plot an allele histogram plot of **DYS462** for each of the eight clusters.

SNP mutations, such as L22 (which defines the I1d sub-clade) and M227 (which defines the I1b sub-clade) have been included in the y-Haplogroup I1 STR Cluster Tree.

The above histograms, and the "y-Haplogroup I1 STR Cluster Tree", are based on an analysis of nearly 1200 individuals who are members of y-Haplogroup I1 and who supplied their 67 FTDNA marker values. An additional 800 individuals supplied just their 37 FTDNA marker values. Nearly a third of the individuals also provided usable information about the geographic location of their most-distant known male-line ancestor. The data was divided up, using a clustering method, into eight clusters - additional sub-clusters could also be determined in some cases, but then the sample size for those sub-clusters is smaller and so less useful for establishing geographic origin. There was sufficient data, however, to generate an acceptable indication of the geographic distribution of the most-distance known ancestors for each of the eight main clusters.

TDR, June 2010